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1. INTRODUCTION

Much of analysis deals with the problem of constructing a function or
operator with given properties. Probably the best known is the celebrated
Hahn–Banach theorem.
Let X be a normed space, let S be a subspace of X, and let f: SQ R be a
linear functional. The Hahn–Banach theorem implies that for every finite
dimensional subspace K of X there exists a linear functional fK: KQ R such
that fK |S 5K=f|S 5K and that ||fK || [ ||f||. In this paper, we want to consider
the reverse problem of reconstructing f from the family of functionals fK.
More generally, we want to replace the real numbers R by a general
Banach space V. That is, consider the situation in which we are given a
family of operators into V, defined on the finite dimensional subspaces of
X, satisfying suitable compatibility conditions. We are going to show that



if the image space V is a dual space, then by applying the so-called inverse
limit we can ‘‘glue’’ operators from finite dimensional subspaces and obtain
an operator on the whole space. We also show that the assumption that V
is dual is in general essential.
Our results are especially useful in the situation where, having con-
structed by finite dimensional methods some special operators on finite
dimensional subspaces, we want to obtain an operator on the whole space.
As an application we generalize some results from [6–8].

2. INVERSE LIMIT AS GLUE

For the convenience of the reader, we first recall from [5] some basic
definitions, notation, and results concerning inverse systems of topological
spaces.
We say that an ordered set (S, \) is directed if for every s, r ¥ S there
exists y ¥ S such that y \ s and y \ r.
Suppose that for every s in a directed set S we are given a topological
space Xs and that for every s, r ¥ S satisfying r [ s, a continuous
mapping psr: Xs QXr is defined; suppose further that p

r
yp
s
r=p

s
y for any s,

r, y ¥ S satisfying y [ r [ s and that pss=idXs for every s ¥ S. In this
situation we say that the family {Xs, p

s
r, S} is an inverse system of the

spaces Xs. An element {xs} of <s ¥ S Xs is called a thread if p
s
rxs=xr for

any s, r ¥ S satisfying r [ s, and the subspace of <s ¥ S consisting of all
threads is called the limit of the inverse system {Xs, p

s
r, S} and is denoted

byI Xs.

Steenrod’s theorem [5, Theorem 3.2.13]. The limit of an inverse
system {Xs, p

s
r, S} of nonempty compact spaces is compact and nonempty.

Any family T of subsets of a given set can be partially ordered by inclu-
sion. ThenT is directed if for every T1, T2 ¥T there exists T ¥T such that
T1 2 T2 … T.
In any case XT is just the product < t ¥ T X ; we equip it with the product
topology.
The reader will be familiar with the definition of nets (also called gener-
alized sequences), e.g., [4, 5].
Now we establish a general extension theorem.

Theorem 1. Let S be a set and let X be a topological space. Let T be a
directed family of subsets of S such that

0
T ¥T

T=S.
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For every T ¥T let a compact subset PT of XT be given. We assume that

R, T ¥T, T … R, f ¥ PR S f|T ¥ PT. (1)

Then there exists a function g: SQX such that

g|T ¥ PT for every T ¥T. (2)

Proof. We are going to apply Steenrod’s theorem.
For R, T ¥T, T … R we define functions pRT : PT Q PR by

pRT(f)=f|T for f ¥ PR.

From (1) we see that pRT is well defined. It is clearly continuous. Thus the
family of spaces {PT}T ¥T jointly with the mappings p

R
T forms an inverse

system. By the assumptions we know that each PT is compact, and there-
fore by Steenrod’s theorem the inverse limitI PT is nonempty. This yields
the existence of {fT}T ¥T such that

fT ¥ PT for T ¥T, (3)

and

(fR)|T=fT for R, T ¥T, T … R. (4)

We define g :=1T ¥T fT. Then (4) yields that g is well defined, while (3)
means that g satisfies (2). L

3. EXTENSIONS OF OPERATORS

In this section we are going to deal with extensions of operators from
finite dimensional subspaces. Our results are connected with the problem of
finding minimal projections, whence the notation P below.
For normed spaces X, V we denote by L(X, V) the space of all contin-
uous linear operators from X to V. Let S be a subspace of X. For a given
operator A ¥L(S, V) we define

PA(X, V)={P ¥L(X, V): P|S=A}

and

lA(X, V)=inf{||P||: P ¥PA(X, V)}.

(This is a mild generalization of similar definitions from [6]; see also [7].)
Thus PA(X, V) denotes the set of all operator extensions of A and lA(X, V)
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the infimum of the norms of all operator extensions of A to all of X. Now
we will show that if V is a dual space and lA(X, V) <. then this infimum
is obtained. We will need the following lemma, whose standard proof we
omit.

Lemma 2. Let X be a normed space and let S be a subspace of X. Let V
be a Banach space which is a dual space and let A ¥L(S, V).
For L \ 0 we put

PL={B ¥PA(X, V): ||B|| [ L}.

Then PL is compact in VX=<x ¥ V V, where in V
X we take the product

topology with respect to the weakg topology in V.

For the case of projections an analogue of the following result has been
proved in [3].

Proposition 3. Let X be a normed space and let S be a subspace of X.
Let V be a Banach space which is a dual space and let A ¥L(S, V).
If lA(X, V) <. then there exists B ¥PA(X, V) such that

||B||=lA(X, V).

Proof. For every d \ 0 we put

Pd :={B ¥PA(X, V): ||B|| [ lA(X, V)+d}.

By the definition of lA(X, V), each Pd is nonempty. By the previous lemma Pd
is compact in VX. Hence P0=4d> 0 Pd is nonempty as an intersection of a
decreasing family of nonempty compact sets. Obviously any B ¥ P0 will do. L

Now we are ready to proceed to the main result of the paper. Suppose
that we are able to estimate lA | K(K, V) for a certain class K of subspaces
of X, directed with respect to the inclusion order. (For example, K could
be the finite dimensional subspaces.) We show that then lA(X, V) is the
limit of a generalized sequence {lA |K(K, V)}K ¥K, which partially generalizes
Theorem 3.1.6 from [6].

Theorem 4. Let X be a normed space and let S be a subspace of X. Let
V be a Banach space which is a dual space and let A ¥L(S, V).
Let K be a directed family of subspaces of X such that S …1K ¥K K and
such that 1K ¥K K is dense in X. Then

lA(X, V)= lim
K ¥K

lA|S 5K (K, V). (5)
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Proof. For any subspaces X1, X2 of X with X1 …X2, it is easy to see
that

lA|S 5X1
(X1, V) [ lA|S 5X2 (X2, V).

Thus to prove (5) it will be enough to show that

lA(X, V) [ sup
K ¥K

lA|S 5K (K, V). (6)

We are going to apply Theorem 1. We take in V weakg topology. It is
enough to consider the case

L :=sup
K ¥K

lA|S 5K (K, V) <..

For every K ¥K we put

PK :={B ¥PA|S 5K (K, V): ||B|| [ L}.

Clearly by Lemma 2 and Proposition 3, PK is compact and nonempty in VK

for every K ¥K (the topology in VK is the product topology with respect
to the weakg topology in V). By Theorem 1 we obtain a function
C: 1K ¥K KQ V such that

C|K ¥ PK for every K ¥K. (7)

This implies that C|K is an operator such that ||C|K || [ L for every K ¥K,
and consequently, that C is a linear operator with ||C|| [ L. By definition of
PK, (7) implies also that C|S 5K=A|S 5K for every K ¥K. By assumption,
S …1K ¥K K, which yields that C|S=A. As C is a linear bounded operator
defined on a dense subset of X, it has a unique continuous extension D to
all of X. Then clearly D|S=A and ||D|| [ L. This means that lA(X, V) [ L,
which proves (6). L

Corollary 5. Let X be a normed space and let S be a subspace of X.
Let V be a finite dimensional Banach space, and let A ¥L(S, V).
LetK be the family of all finite dimensional subspaces of X. Then

lA(X, V)= lim
K ¥K

lA|S 5K (K, V).

Example 6. Now we will show that the assumption that V is a dual
space in Theorem 4 cannot be dispensed with.
As usual we denote by a. the Banach space of all real bounded sequences
with the supremum norm, by c0 the subspace of a. consisting of all sequences
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with limit zero, and by c00 … c0 the space of all sequences which are even-
tually zero.
Let K denote the set of all finite dimensional subspaces of a.. Let us
first notice that lid|c00 5K (K, c0)=1 for every K ¥K. This follows from the
fact that for every K ¥K there exists n ¥ N such that for every x ¥ c00 5K
we have xk=0 for every k > n. Thus we can define a norm one extension P
of the identity operator from c00 5K onto K by

P(x1, ..., xn, xn+1, ...)=(x1, ..., xn, 0, 0, ...).

However, lid|c00 (a
., c0)=., as it is well known there is no bounded

linear projection from a. onto c0. See for example [1] for various proofs of
this and some historical discussion.

Remark 7. The Hahn–Banach theorem ‘‘works’’ by prolonging the
functional by transfinite induction or by the Kuratowski–Zorn lemma. We
would like to mention that the technique used here (i.e., the existence of
inverse limit of compact spaces) can also provide a proof.
So let X be a normed space and let S be a subspace of X. Let f: SQ R
be a linear functional. By the finite dimensional case of the Hahn–Banach
theorem, we have lf|S 5K (K, R) [ ||f|| for every finite dimensional subspace
K of X. By Corollary 5 this implies that lf(S, R)=||f||. Hence by Propo-
sition 3 there exists g ¥L(X, R) such that ||g||=||f|| and g|S=f.

4. EXTENSIONS IN TENSOR PRODUCT SPACES

For some basic results concerning tensor products we refer the reader to
[2] (see also [7]). We only mention that a norm a on X×Y is called a
crossnorm if a(x é y)=||x|| · ||y|| for all x ¥X, Y ¥ Y. Given a norm a on
X é Y, one denotes by X éa Y the completion of X é Y with respect to
this norm. Given spaces X, Y with norm a on X é Y and operators
A ¥L(X, X), B ¥L(Y, Y), we denote by A é B the tensor product of A
and B. If A é B ¥L(X é Y, X é Y) then by A éa B ¥L(X é aY, X éa Y)
we denote the unique continuous extension of A é B to X éa Y. Clearly we
have ||A é B||=||A éa B||.
In this section we are going to correct and generalize results from [7].
First we show with the following example that the proof of the main
theorem of that paper, namely Theorem 2.5, contains a gap.

Example 8. Let X be a separable Banach space and let Xn be an
increasing sequence of finite dimensional subspaces of X such that
X=1n Xn. Let V be a subspace of X1 and let S be a subspace of X which
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contains V. Put Sn=Xn 5 S. It is claimed in the proof of [7, Theorem 2.5]
that for everyM ¥L(S, V) we have

lM(X, V)= lim
nQ.
lM|Sn
(Xn, V).

We show that this need not be the case. Let X and Xn be chosen as above.
Let e ¥X1 and f ¥X01n Xn be chosen arbitrarily. We put V=R · e,
S=R · e+R ·f. Clearly V … S …X, V …X1. Let M ¥L(S, V) be defined
by

M(ae+bf)=be.

Then M|Sn=0, so limnQ. lM|Sn (Xn, V)=0. However, by the definition of
M we have lM(X, V) > 0.
There are several ways that the gap contained in the proof of
Theorem 2.5 from [7] can be removed. Perhaps the most natural is simply
to assume that the sequence of finite dimensional subspaces Sn=S 5Xn
considered in the proof satisfies the following additional condition (c):

0
n
Sn=S.

This can easily be arranged since S (being a subspace of the separable
Banach space X) is also separable. One has only to choose the subspaces Sn
first, and then choose suitable Xn. Of course the sequence Sn constructed in
Example 8 does not satisfy (c).
For the convenience of the reader we state Theorem 2.5 from [7]. The
special case when X and Y are finite dimensional, which is correctly proved
in [7], will be needed in the proof of Theorem 10.

Theorem L. Let X, Y be separable Banach spaces (complex or real).
Suppose V …X andW … Y are finite dimensional linear subspaces. Let V … S
and W … Z, where S is a subspace of X and Z is a subspace of Y, and let
M ¥L(S, V), N ¥L(Z, W) be given. If a is a reasonable crossnorm on
X é Y then

lM éN(X éa Y, V éa W) \ lM(X, V) lN(Y, W).

We will need the following simple lemma.

Lemma 9. Let X, Y be Banach spaces. Suppose that V …X and W … Y
are finite dimensional subspaces. Let S be a subspace of X and Z be a
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subspace of Y, and let M ¥L(S, V), N ¥L(Z, V) be given. If M éN ¥

L(S é Z, X é Y) then

lM éN(X é Y, V éW)=lM éa N(X éa Y, V éa W).

Proof. Let Fa ¥PM éa N(X éa Y, V éa W) be arbitrary. Then clearly
F=Fa |S é Z ¥PM éN(X é Y, V éW). Since X é Y is dense in X éa Y we
obtain the equality ||F||=||Fa || which yields

lM éN(X é Y, V éW) [ lM éa N(X éa Y, V éa W).

Now we establish the reverse inequality. Let F ¥PM éN(X é Y, V éW) be
arbitrary. Then F has a unique continuous extension Fa to X éa Y and of
course ||Fa ||=||F||. Now

Fa |S é Z=M éN.

Moreover, since S é Z is dense in S éa Z we obtain that

Fa |S éa Z=M éa N,

which implies that Fa ¥PM éa N(X éa Y, V éa W). L

Applying Theorems L and 4 we are able to correct and generalize
Theorem 2.5 from [7]. In particular, we show that the assumption that X
and Y be separable is not essential.

Theorem 10. Let X, Y be Banach spaces. Suppose that S …X and
Z … Y are subspaces. Let V be a finite dimensional subspace of S andW be a
finite dimensional subspace of Z, and let M ¥L(S, V), N ¥L(Z, W) be
given. If a is a reasonable crossnorm on X é Y with respect to which
M éN ¥L(S é Z, V éW) then

lM éN(X éa Y, V éa W) \ lM(X, V) lN(Y, W).

Proof. Let KX and KY denote the class of all finite dimensional sub-
spaces of X and Y, respectively. Clearly S …X=1KX ¥KX

KX andW … Y=
1KY ¥KY

KY, so by Corollary 5 we obtain that

lM(X, V)= lim
K ¥KX

lM|S 5K (K, V), (8)

lN(Y, W)= lim
K ¥KY

lN|Z 5K (K, W). (9)

Now let

K :={KX éKY: KX ¥KX, KY ¥KY}.
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Then 1K ¥K K equals X é Y. Applying Corollary 5 once more we obtain
that

lM éN(X é Y, V éW)= lim
KX éKY ¥K

l(M éN)|(S 5KX) é (W 5KY)
(KX éKY, V éW).

By (8), (9), and the finite dimensional case of Theorem L, we now see that

lM éN(X é Y, V éW) \ lM(X, V) lN(Y, W).

Lemma 9 makes the proof complete. L

As a corollary we see that the assumptions in Theorems 2.5 and 2.6 from
[7] about X and V being separable are both superfluous. (The proof pre-
sented in [7] holds, except that in the last part of the proof of Theorem 2.5
one applies our Corollary 5 instead of the reasoning from [6].) This yields
in particular that the assumption in Theorem 3.1 from [7], that S, T are
metrizable or separable, is superfluous.

5. CAUCHY FUNCTIONAL EQUATION

In this section we show that Theorem 1 yields new results about
Lipschitz stability of the Cauchy functional equation. Let X, V be normed
spaces and let D …X. By the Cauchy difference of a given function
f: DQ V we mean the function Cf: C(D)Q V defined by

Cf(x, y) :=f(x+y)−f(x)−f(y) for (x, y) ¥ C(D),

where C(D)={(x, y) ¥X×X: x, y, x+y ¥ D}. One notices easily that a
function f: XQ V is additive iff its Cauchy difference is identically zero.
Thus, in a certain sense, the Cauchy difference measures the ‘‘distance’’ of
the given function from the space of additive functions.
If 0 ¥ D, then we denote by lip(D, V) the space of all Lipschitz functions
from D to V with the norm

||f||lip :=||f(0)||+lip(f),

where lip(f) denotes the smallest Lipschitz constant of f. For the reader’s
convenience we quote the main result from [8] dealing with the local
Lipschitz stability of the Cauchy functional equation.

Theorem TT. Let X, V be finite dimensional normed spaces, let D …X
be a convex set such that 0 ¥ D, and let f: DQ V be a function such that

APPROXIMATION OF LIPSCHITZ FUNCTIONS 265



Cf ¥ lip(C(D), V). Then there exists an additive function a: XQ V such that
f−a|D ¥ lip(D, V) and

||f−a|D ||lip [ ||Cf||lip.

We would like to mention that the main tool in the proof of the above
theorem is Rademacher’s theorem. Thus the proof has strictly finite
dimensional character. We will show that Theorem 1 leads to the same
conclusion, without the assumption of the finite dimensionality of X.

Theorem 11. Let X be a normed space and let V be a finite dimensional
Banach space. Let D …X be a convex set such that 0 ¥ D, and let f: DQ V
be a function such that Cf ¥ lip(C(D), V). Then there exists an additive
function A: XQ V such that f−A ¥ lip(D, V) and

||f−A|D ||lip [ ||Cf||lip.

Proof. Without loss of generality we may assume that D generates X.
Let K be an arbitrary finite dimensional subspace of X. It is easily seen
that intK(D 5K) ]”. For if d1, ..., dn ¥ D form a linearly independent set
which generates K, then 1

n+1 d1+·· ·
1
n+1 dn ¥ intK(D 5K), since 0 ¥ D 5K.

Let

PK :={a: KQ V additive | ||f|D 5K−a|D 5K ||lip [ ||Cf||lip}.

We are going to show that the assumptions of Theorem 1 are satisfied. We
take in V the norm topology and in VX take the product topology.
Let us first notice that ||C(f|K)||lip [ ||Cf||lip, so by Theorem TT we
obtain that PK is nonempty for each finite-dimensional subspace K of X.
We will now show that PK is compact in VK. Directly from the definition
one can check that PK is closed. It is now enough to show that PK is con-
tained in a compact set. Let a0 ¥ PK be arbitrarily chosen and let

W(K) :={g ¥ Vk | ||g(k)|| [ 2 ||Cf||lip ||k|| for k ¥K}.

As V is finite dimensional the set {y ¥ V: ||y|| [ 2 ||Cf||lip ||k||} is compact in
V for every k ¥K, so W(K) is compact as a product of compact sets. This
implies that a0+W(K) is also compact. We show that PK … a0+W(K). Let
a ¥ PK be arbitrary. Then

||a|D 5K−a0 |D 5K ||lip [ ||f|D 5K−a|D 5K ||lip+||f|D 5K−a0 |D 5K ||lip [ 2 ||Cf||lip,

which means that a−a0 is an additive function which is Lipschitz with
constant 2 ||Cf||lip on the set D 5K which has nonempty interior in K. This
yields that ||a−a0 ||lip [ 2 ||Cf||lip and consequently that a−a0 ¥W(K).
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Thus we have obtained that for every finite dimensional subspace K of X
the set PK is nonempty and compact. By Theorem 1 we obtain that there
exists a function A: XQ V such that A|K ¥ PK for every finite dimensional
subspace K of X. However, this yields trivially that A is additive and that
the conclusion of the theorem holds. L

Since we have shown that the assumption in Theorem TT that X is finite
dimensional is not essential, it seems natural to ask if the same is true
about V.
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